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ABSTRACT 

Given two functions f(z),  g(z) in the (usual) class S, we can form the new 

funct ions (ar i thmetr ic  and geometric mean functions) 

F(z) = (~f(z) + ;gg(z) and G(z) = z( f (z ) / z )  c~ (g(z)/z) f~ , 

where a,  ;9 6 (0, 1) and a + ;9 = 1. This paper  determines  the maximum 

valence of the funct ions F and G. 

1. Introduct ion  

Let A denote the class of functions f (z)  regular in the unit disk E and f(0) = 

f ' (0)  - 1 = 0. Furthermore, let S, ST, SP and CC denote the subclasses of A 

consisting of univalent, starlike, spiral-like and close-to-convex functions respec- 

tively; then, as is well known, ST C SP C S and CC C S. 

In [3], Goodman proved that if functions f (z)  and g(z) are selected properly 

from S, then the sum 
- I  

F(z) = (y(z) + g(z)) 

and the product 

C(z)  = 
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have valence infinity in E. In [4], Goodman discussed further the more general 

means 

(1) F(z) = af(z)  +fig(z), 

(2) G(z) = f~(z)g~(z) = z( f(z) /z)a(g(z) /z)  ~ , 

where a > 0, fi > 0 and a + fi = 1. He proved that if 

1/(1 + e ~') < a, /7 < e~'/(1 + e~'), 

then there are functions f(z) and g(z) in S such that the functions F(z) and 

G(z), defined by (1) and (2) respectively, have valence infinity in E. But [1], 

if 0 < a < 1/(1 + e'~), what can be said? Is there some bound on the valence 

of F(z) and G(z) that is a function of a?  This note determines the maximum 

valence of F(z) and G(z), hence answers these questions. 

2. Ar i thmet i c  means  

We first investigate the maximum valence of F(z) when f(z) and g(z) are in SP. 

THEOREM 1: Ira > O, fi > 0 and a + fi = 1, then there are functions f(z) and 

g(z) in SP such that the function F(z), given by (1), has walence inSinity in E. 

Proof." (i) If a = fi = 1/2. We define functions 

y ( z )  = z(t  + z) - '+ i  and g(z) = z(1 + z) - ' - i  

where all powers are the principal branches. We see easily that f(z) and g(z) are 

in A. Then we observe that 

Re[e'~i/4zf'(z)/f(z)] > 0 and Re[e-~i/4zg'(z)/g(z)] > 0 

(z • E)  and hence the functions f(z) and g(z) are in SP. 

By (1), we obtain 

f(z) = ~z ((i + z)-,+i + (i + z)-'-~). 

The condition (1 + z) -1+i + (1 + z) -~- i  = 0 leads to 

(3) (1 + z ) - l+ i / (1  + z) -1 - i  = - 1  
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or 2i In (1 + z) = (1 + 2n)Tri. We set z,, = e (1+2")'/2 - 1 (n = - 1 ,  - 2 , . . . ) .  For 

each negative integer n, z ,  is in E mad is the root of the equation (3), i.e., there 

are infinitely many points z ,  E E (n = -1 ,  - 2 , . . . )  such that F ( z , )  = O. 

(ii) Suppose that a and fl satisfy the conditions of Theorem 1 mad a ¢/~.  Since 

0  ̀ and/~ are symmetric, without any loss of generality, we may a~ssume 0  ̀ < / L  

For each pair 0`,/~ that satisfies the conditions of Theorem 1 mad 0, < /~, there 

are infinitely many integers k such that 

0 < 4---~r In - < 1. 

We take any integer kl from these integers k and set 

b=4k-k-~ln ~ and a = l - v ~ - b  2. 

It is obvious that 0 < a, b < 1 and [1 - a - bi[ = 1. We define the flmctions 

f ( z ) = z ( l + z )  -~-bi  aald g ( z ) = z ( l + z )  -~+bi 

where all powers are the principal branches. Obviously, f ( z )  and g(z)  are in A. 

We obtain 

(4) z f ' ( z ) / f ( z )  = (1 + (1 - a - b i ) z ) / (1  + z). 

We set R ( z )  = (1 + (1 - a - h i ) z ) / (1  + z). Now R ( z )  is a linear (MSbuis) 

transformation. It maps the unit circle onto straight line L which passes through 

the origin and makes an angle 01 (-7r /2  < 01 < 0) with the positive real axis. 

Hence, by R(0) = 1, we obtain that R(z )  maps the unit disk onto the half-plane 

on the right of the line L. We set 0 = -7r/2 - 01. Then we have -7r/2 < 0 < 0 

and 

Re [ e % f ' ( z ) / f ( z ) ]  > 0 

(z E E).  Hence f ( z )  is in S P .  Similarly, we can obtain that 9(z) is in S P .  By 

(1), we have 

F ( z )  = z (o,(1 + z)  -a-b  + + z ) -a+b i )  . 

The condition 0,(1 + z) -a-hi  +/~(1 + z) -a+bi = 0 leads to 

(5) (1 + + z) = 



292 ZHOU Jl  AND XIAO PINGAN lsr. J. Math. 

or 2b/ln(1 + z) = ln(a/~)  + (1 + 2m)Tri. We set zm = e d" - 1, 

dr, = ~b[i In (/3/a) + (1 + 2mfir] (m = -1 ,  - 2 , . . . ) .  

Since 

b = 4k-~ln(/~/~), 

we obtain that for each negative integer m, Zm E E mid z,, is the equation 

(5), i.e., there are infinitely many points z,,, E E such that F(zm) = 0. This 

completes the proof of Theorem 1. i 

Since S P  C S, by Theorem 1, we obtain 

COROLLARY l: _l'fot > 0, fl > 0 and a + fl = 1, then there are functions f ( z )  

and g(z) in S such that the function F(z) ,  given by (1), has valence infinity in 

E. 

3. G e o m e t r i c  m e a n s  

We first give one lemma. It is due to Canlpbell and Singh [2]. 

LEMMA: Let G(z) be analytic in E and N be a simply connected region in E 

with ON N OE = e ie. Let P(z)  and Q(z) be analytic in E and satisfy 

(a) G(z) = P(z)Q(z).  

(b) lim P(z)  = c ~ 0 as z ~ e i° within N. 

(c) Q(z) has no asymptotic values within N at e i°, i.e., for every path v in N 

ending at e i°, Q(z) does not tend to a finite or infinite limit as z --~ e i# along v. 

(d) wl is in the range set of Q(z) on N,  i.e., for every 7" > O, there is a point z 

in {Iz - c °l < r }  n N wi th  Q ( z )  = w , .  

(e) wl is not in the cluster set of Q(z) on ON, i.e., there is no sequence zn on 

ON for which Q(z , )  ~ wl. 

Then cwl is in the range set of G(z) on N.  

Remark: Let the region M contain the region N and OM fl ON = {d} be a 

single point set. We replace the unit disk E by M and replace e i0 by the point 

d. The Lemma is valid. 

THEOREM 2: h t a  >_ /3 > 0 and a + ~ = 1, then there are functions f ( z )  in S P  

and g(z) in CC such that the function G(z), given by (2), has valence infinity in 

E. 
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Proof: Since f (0)  = g(0) = 0, the functions fa(z)  and ga(z) are not well-defined 

in E,  but the condition a +/7 = 1 assures us the product G(z) can be defined 

so that it is regular in E.  If we make a cut in E by deleting the points z _> 0, 

then each factor can be defined so that it is regular in the cut unit disk E*. The 

following considerations are then valid in E*. 

We define functions 

f ( z )  = z(1 + z) s 

where 

and g(z) = - (1  + z )  In ( 1 -  z) 

s . . . .  t- 2 -  i, z E E 
ot 

and power and logarithm are the principal branches. Obviously, f ( z )  and g(z) 
are in A. 

Applying the same techniques used in Theorem 1, we can obtain that the 

function f ( z )  is in S P  since l1 + sl = 1 and 

z f ' ( z ) / f ( z )  = [1 + z + sz]/(1 + z). 

We obtain easily that the nth coefficient of g(z) is 

b, = (2n - 1)/[,,(,, - 1)], n _> 2. 

Then we observe that b2 > 1 and 

( n  + À ) b . + l  - nbn = - l / [ ( n  - 1 )h i .  

By [5, Vol. II, page 28, problem 8], we have g(z) is in CO. 
From (2), we obtain 

G(z) = f~'(z)ga(z) = z ~ ( - In(1  - z)) a (1 + z) q 

We set 

where 

e ( z )  = z ° ( - l n f l  - z ) )  , O ( z )  = (1 + z )q ,  Wl = 1, 

c = ( - 1 ) < ' ( - I n 2 )  a, e ie = - 1 ,  M = E* and N is the region bounded by a 

triangle with vertices - 1 ,  -½(1 + i) and ½(-1 + i). Hence, by the Lemma and 

the remark, we obtain that G(z) assumes the value ( - 1 ) ~ ( -  In 2) 0 infinitely often 

in E*, i.e., G(z) has valence infinity in E.  l 
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COROLLARY 2: / f  a > 0, /5 > 0 and a +/5  = 1, then there are functions 

f(z) ,  g(z) in S such *hat the function G(z), given by (2), has valence infinity in 

E. 

Proof." We note that a and/5 are symmetric. Since SP C S and CC C S, hence, 

by Theorem 2, we obtain the Corollary. 1 

References and further results on the valence of sums and products can be 

found in Goodman [5] Volume II, Chapter 14, Sections 2 and 6. An interesting 

modification of the problem is to find the largest disk in which F(z)  and G(z) are 

always univalent, when f ( z )  and g(z) are arbitrary functions from certain fixed 

sets. 
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